# Chapter 1 - Matter and Change

## 1-1 Chemistry is a Physical Science

- I. <u>Physical science</u>
  - A. Purpose
    - Search for relationships in nature which can be used to predict the behavior of things
  - B. Branches of Chemistry
    - 1. Analytical chemistry
    - 2. Organic chemistry
    - 3. Inorganic chemistry
    - 4. Physical chemistry
    - 5. Biochemistry
    - 6. Physical chemistry
    - 7. Nuclear chemistry

## II. Types of Research

- A. Basic Research
  - 1. Carried out for the purpose of increasing knowledge
    - a. Commercial applications can result from basic research, but they are not the goal of basic research
- B. Applied Research
  - 1. Carried out to solve a problem
    - a. Cures and vaccines for diseases
    - b. Non-polluting fuels
- C. Technological Development
  - 1. Application of discoveries to products that improve quality of life
    - a. transistors and microchips
    - b. optical fibers

## 1-2 Matter and Its Properties

- I. Matter
  - A. Definition of Matter
    - 1. Anything that has mass and occupies space (has volume)
      - a. mass is a measure of the amount of matter
      - b. volume is a measure of the amount of 3-dimensional space an object occupies
  - B. Basic Building Blocks of Matter
    - 1. Atom
      - a. The smallest unit of an element that maintains the properties of that element
    - 2. Element
      - a. A pure substance made of only one kind of atom
    - 3. Compound
      - a. A substance that is made from the atoms of two or more elements that are chemically bonded

- 4. Molecule
  - a. The smallest unit of an element or compound that retains all of the properties of that element or compound

## II. Properties and Changes in Matter

- A. Extensive Properties
  - 1. Dependent upon the amount of matter present
    - a. volume
    - b. mass
    - c. energy (heat content)
- B. Intensive Properties
  - 1. Independent of the amount of matter present
    - a. melting point
    - b. boiling point
    - c. density
- C. Physical Properties
  - 1. A characteristic that can be observed or measured without changing the identity of the substance
    - a. melting point, boiling point, density, hardness, color, odor
- D. Physical Changes
  - 1. A change in a substance that does not involve a change in the identity of the substance
    - a. Change of state (phase change)
      - (1) Solid

Retains size and shape Has a definite volume Cannot be compressed

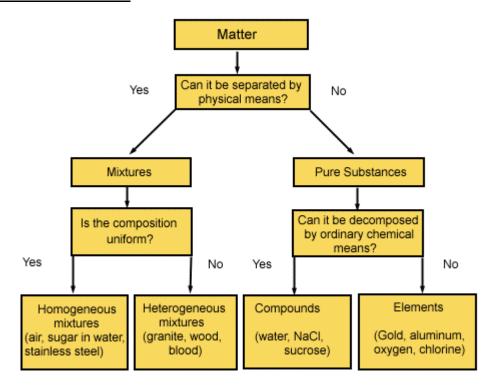
(2) Liquid

Not rigid

Takes the shape of its container - no definite shape Has a definite volume

(3) Gas or vapor

Easily compressed


No definite shape or volume

Takes the shape of its container

- E. Chemical Properties
  - 1. Relates to a substances ability to undergo changes that transform it into different substances
    - a. ability to: combust, oxidize, neutralize, etc
- F. Chemical Changes
  - 1. A change in which one or more substances are converted into different substances
    - a. combustion, oxidation, neutralization

- G. Energy Changes in Matter
  - 1. The Law of Conservation of Energy
    - Energy may be absorbed in a reaction (called "endothermic") or released in a reaction (called "exothermic"), but energy is not created or destroyed

### III. Classification of Matter



### A. Mixtures

- A blend of two or more kinds of matter, each of which retains its own identity and properties
- 2. The components of mixtures can usually be separated through physical means
  - a. filtration, distillation, chromatography, sedimentation, extraction
- 3. Heterogeneous mixtures
  - a. mixtures that are not uniform throughout
- 4. Homogeneous mixtures (solutions)
  - a. mixtures that are uniform throughout

#### B. Pure Substances

- 1. Fixed composition
  - a. Every sample of a pure substance has the same characteristic properties
  - b. Every sample of a pure substance has exactly the same composition
- 2. Compounds are pure substances
  - a. A compound can be decomposed into two or more simpler compounds or elements by a chemical change
- 3. Elements are pure substances

- C. Laboratory Chemicals and Purity
  - 1. All laboratory chemicals include some impurities
  - 2. Lower impurities = higher cost
  - 3. Reagent grade is highest purity

#### 1-3 Elements

- I. Introduction to the Periodic Table
  - A. Symbols of Elements
    - 1. First letter is always capitalized
    - 2. Second letter, if there is one, is never capitalized
    - 3. Latin (L) and German (G) Origins of some symbols

| Modern Name | Symbol | Older name      |
|-------------|--------|-----------------|
| Antimony    | Sb     | Stibium - G     |
| Copper      | Cu     | Cuprum - L      |
| Gold        | Au     | Aurum - L       |
| Iron        | Fe     | Ferrum - L      |
| Lead        | Pb     | Plumbum - L     |
| Mercury     | Hg     | Hydrargyrum - L |
| Potassium   | K      | Kalium - L      |
| Silver      | Ag     | Argentum - L    |
| Sodium      | Na     | Natrium - L     |
| Tin         | Sn     | Stannum - L     |
| Tungsten    | W      | Wolfram - G     |

- B. Organization of the Table
  - 1. Groups or Families
    - a. Vertical columns containing elements with similar chemical properties
  - 2. Periods (series)
    - a. Horizontal rows of elements
  - 3. Metals and Nonmetals
    - a. A line on the table usually separates the metals from the nonmetals
    - b. Metalloids, which straddle the line, are considered nonmetals
  - 4. Lanthanide and Actinide Series
    - a. Metals there place at the bottom will become more apparent in chapter 4

# II. Types of Elements

- A. Metals
  - 1. Luster
  - 2. Good conductor of heat and electricity
  - 3. Malleability
  - 4. Ductility
  - 5. High tensile strength
- B. Nonmetals
  - 1. Many nonmetals are gases at room temperature
  - 2. Solid nonmetals tend to be brittle
  - 3. Poor conductors of heat and electricity
- C. Metalloids
  - 1. Some properties of metals and some properties of nonmetals
  - 2. Solids at room temperature
  - 3. Semiconductors of electricity
- D. Noble Gases
  - 1. All are gaseous members of group 18
  - 2. Generally unreactive