Chapter 3 - Atoms: The Building Blocks of Matter

3-1 The Atom: From Philosophical Idea to Scientific Theory

Democritus (400 BC)

"The only existing things are atoms and empty space; all else is opinion"

- I. Foundations of Atomic Theory
 - A. Quantitative Analysis
 - 1. Analysis of chemical rxns using improved balances and other measuring devices
 - B. Law of Conservation of Mass
 - 1. Mass is neither created nor destroyed during ordinary chemical rxns
 - C. Law of Definite Proportions
 - 1. A chemical compound contains the same elements in exactly the same proportions by mass regardless of the size of the sample or the source of the sample
 - D. Law of Multiple Proportions
 - If two or more different compounds are composed of the same two elements, then the ratio of the masses of the second element combined with a certain mass of the first element is always a ratio of small whole numbers
 - a. CO_2 and CO
 - b. H_2O and H_2O_2
- II. <u>Atomic Theory</u>
 - A. John Dalton (1766 -1844)
 - 1. All matter is made up of very tiny particles called atoms
 - 2. Atoms of a given element are identical in size, mass, and other properties; atoms of different elements differ in size, mass and other properties
 - 3. Atoms cannot be subdivided, created, or destroyed
 - 4. Atoms of different elements combine in simple whole-number ratios to form chemical compounds
 - B. Shortcomings of Dalton's theory
 - 1. Could not explain isotopes
 - C. Modern Atomic Theory
 - 1. All matter is made up of very tiny particles called atoms
 - 2. Atoms of the same element are chemically alike
 - Individual atoms of an element may not all have the same mass. However, the atoms of an element have a definite average mass that is characteristic of the element
 - 4. Atoms of different elements have different average masses
 - 5. Atoms are not subdivided, created, or destroyed in chemical rxns

3-2 The Structure of the Atom

- Atom The smallest unit of an element that retains the properties of that Element
- I. Discovery of the Electron
 - A. Cathode Rays and the Electron
 - 1. Joseph John Thomson (1897)
 - a. Cathode ray tube produces a ray with a constant charge to mass ratio
 - b. All cathode rays are composed of identical negatively charged particles (electrons)

- B. Charge and Mass of the Electron
 - 1. Millikan's Oil Drop Experiment

- a. Electron is negatively charged
- b. Mass is about 1/2000th of a hydrogen atom
- (a) Electron mass is 9.109 x 10⁻³¹kg
- 2. Inferences from the properties of electrons
 - a. Atoms are neutral, so there must be positive charges to balance the negatives
 - b. Electrons have little mass, so atoms must contain other particles that account of most of the mass

II. <u>The Nucleus</u>

- A. The Rutherford Experiment (1911)
 - 1. Alpha particles (helium nuclei) fired at a thin sheet of gold
 - a. Assumed that the positively charged particles were bounced back if they approached a positively charged atomic nucleus head-on (Like charges repel one another)

- 2. Very few particles were greatly deflected back from the gold sheet
 - a. nucleus is very small, dense and positively charged
 - b. most of the atom is empty space
- B. Structure of the Nucleus
 - 1. Protons
 - a. Positive charge, mass of 1.673x10⁻²⁷kg
 - b. The number of protons in the nucleus determines the atom's identity and is called the atomic number
 - 2. Neutrons
 - a. No charge, mass of 1.675×10^{-27} kg
 - 3. Nuclear Forces
 - a. Short range attractive forces:

neutron-to-neutron, proton-to-proton, proton-to-neutron

Particle	Symbols	Relative	Mass	Relative	Actual mass
	-	charge	Number	mass (amu*)	(kg)
Electron	e 0e	-1	0	0.000 5486	9.109x10 ⁻³¹
Proton	p^{+} ¹ ₁ H	+1	1	1.007 276	1.673x10 ⁻²⁷
Neutron	n° $\frac{1}{0}n$	0	1	1.008 665	1.675x10 ⁻²⁷

- C. Sizes of Atoms
 - 1. Atomic radius
 - a. 40 to 270 picometers (pm)

(1) 1 pm = 10⁻¹²m

- b. Most of the atomic radius is due to the electron cloud
- 2. Nuclear radius
 - a. 0.001 pm
 - b. density is 2x108 metric tons/cm³
 - (1) 1 metric ton = 1000kg

3-3 Counting Atoms

- I. <u>Atomic Number, Isotopes and Mass Number</u>
 - A. Atomic Number (Z)
 - 1. The number of protons in the nucleus of each atom of that element
 - 2. Atoms are identified by their atomic number
 - 3. Because atoms are neutral,

protons = # electrons

- 4. Periodic Table is in order of increasing atomic number
- B. Isotopes
 - 1. Atoms of the same element that have different masses
 - 2. All elements of the same element have the same # of protons, but may vary in the number of neutrons
 - 3. Although isotopes have different masses, they do not differ significantly in their chemical behavior
 - 4. Hydrogen as an example:

- C. Mass Number
- 1. The total number of protons and neutrons in the nucleus of an isotope
- D. Designating Isotopes
 - 1. Hyphen notation
 - a. Mass number is written after the name of the element (1) hydrogen-2, helium-4
 - 2. Nuclear Symbol
 - a. Composition of the nucleus using the element's symbol

(1) ${}^{2}_{1}H$ Mass number =2 Atomic number = 1

(2) ${}^{4}_{2}$ He Mass number = 4 Atomic number = 2

II. Using Atomic Mass

A. Relative Atomic Masses

- 1. Atomic mass unit (amu)
 - a. 1 amu = 1/12 the mass of a carbon-12 atom
- 2. All masses on the periodic table are relative to the carbon-12 standard
- 3. Approximate masses of atomic particles
 - a. proton = 1 amu
 - b. neutron = 1 amu
 - c. electron = 0.000 5486 amu

- B. Average Atomic Masses
 - 1. The weighted average of the atomic masses of the naturally occurring isotopes of an element
 - a. Atomic masses on the periodic table are average masses
 - b. In calculations using atomic mass, we will round the masses to two decimal places before doing calculations

Examples:	Mg = 24.3050	we use: 24.31
	O = 15.9994	we use: 16.00
	N = 14.00674	we use: 14.01

- III. Avogadro's Number and the Mole
 - A. The Mole
 - 1. The amount of substance that contains as many particles are there are in exactly 12 grams of carbon-12
 - 2. The amount of substance that contains the Avogadro number of particles
 - B. Avogadro's Number
 - 1. The number of particles in exactly one mole of a pure substance
 - 2. Avogadro's number = 6.022×10^{23}
 - C. Molar Mass
 - 1. The mass of one mole of a pure substance
 - a. Units are grams/mole (or g/mol)
 - b. Molar mass of an element equals the average atomic mass in gram units
 - D. Gram/Mole Conversions
 - 1. Convert from grams to moles

grams
$$x \left(\frac{1}{molar mass}\right) = moles$$

2. Convert from moles to grams

moles x molar mass = grams

- E. Conversions with Avogadro's Number
 - 1. Review sample problems on pages 84 and 85 solutions vary depending on the given data and the desired quantity