Chapter 5 - The Periodic Law

5-1 History of the Periodic Table

- I. <u>Mendeleev's Periodic Table</u>
 - A. Organization
 - 1. Vertical columns in atomic weight order
 - a. Mendeleev made some exceptions to place elements in rows with similar properties
 - (1) Tellurium and iodine's places were switched
 - 2. Horizontal rows have similar chemical properties
 - B. Missing Elements
 - 1. Gaps existed in Mendeleev's table
 - a. Mendeleev predicted the properties of the "yet to be discovered" elements
 - (1) Scandium, germanium and gallium agreed with predictions
 - C. Unanswered Questions
 - 1. Why didn't some elements fit in order of increasing atomic mass?
 - 2. Why did elements exhibit periodic behavior?
- II. Moseley and the Periodic Table (1911)
 - A. Protons and Atomic Number
 - 1. Xray experiments revealed a way to determine the number of protons in the nucleus of an atom
 - 2. The periodic table was found to be in atomic number order, not atomic mass order

a. The tellurium-iodine anomaly was explained

- B. The Periodic Law
 - 1. The physical and chemical properties of the elements are periodic functions of their atomic numbers

***Moseley was killed in battle in 1915, during WWI. He was 28 years old

- III. <u>The Modern Periodic Table</u>
 - A. Discovery of the Noble Gases
 - 1. 1868 Helium discovered as a component of the sun, based on the emission spectrum of sunlight
 - 2. 1894 William Ramsay discovers argon
 - 3. 1895 Ramsay finds helium on Earth
 - 4. 1898 Ramsay discovers krypton and xenon
 - 5. 1900 Freidrich Dorn discovers radon
 - B. The Lanthanides
 - 1. Early 1900's the elements from cerium (#58) to lutetium (#71) are separated and identified
 - C. The Actinides
 - 1. Discovery (or synthesis) of elements 90 to 103
 - D. Periodicity
 - 1. Elements with similar properties are found at regular intervals within the "periodic" table

5-2 Electron Configuration and the Periodic Table

- I. <u>Periods and the Blocks of the Periodic Table</u>
 - A. Periods
 - 1. Horizontal rows on the periodic table
 - 2. Period number corresponds to the highest principal quantum number of the elements in the period
 - B. Sublevel Blocks
 - 1. Periodic table can be broken into blocks corresponding to *s*, *p*, *d*, *f* sublevels
- II. Blocks and Groups
 - A. s-Block, Groups 1 and 2
 - 1. Group 1 The alkali metals
 - a. One *s* electron in outer shell
 - b. Soft, silvery metals of low density and low melting points
 - c. Highly reactive, never found pure in nature
 - 2. Group 2 The alkaline earth metals
 - a. Two *s* electrons in outer shell
 - b. Denser, harder, stronger, less reactive than Group 1
 - c. Too reactive to be found pure in nature
 - B. d-Block, Groups 3 12
 - 1. Metals with typical metallic properties
 - 2. Referred to as "transition" metals
 - 3. Group number = sum of outermost *s* and *d* electrons
 - C. p-Block elements, Groups 13 18
 - 1. Properties vary greatly
 - a. Metals
 - (1) softer and less dense than d-block metals
 - (2) harder and more dense than s-block metals
 - b. Metalloids
 - (1) Brittle solids with some metallic and some nonmetallic
 - properties
 - (2) Semiconductors
 - c. Nonmetals
 - (1) Halogens (Group 17) are most reactive of the nonmetals
 - D. f-Block, Lanthanides and Actinides
 - 1. Lanthanides are shiny metals similar in reactivity to the Group 2 metals
 - 2. Actinides
 - a. All are radioactive
 - b. Plutonium (94) through Lawrencium (103) are man-made

I. <u>Atomic Radii</u>

- A. Atomic Radius
 - 1. One half the distance between nuclei of identical atoms that are bonded together

B. Trends

- 1. Atomic radius tends to decrease across a period due to increasing positive nuclear charge
- 2. Atomic radii tend to increase down a group due to increasing number energy levels (outer electrons are farther from the nucleus)

II. Ionization Energy

- A. Ion
 - 1. An atom or a group of atoms that has a positive or negative charge
- B. Ionization
 - 1. Any process that results in the formation of an ion
- C. Ionization Energy
 - 1. The energy required to remove one electron from a neutral atom of an element, measured in kilojoules/mole (kJ/mol)

A + energy \rightarrow A⁺ + e⁻

- D. Trends
 - 1. Ionization energy of main-group elements tends to increase across each period
 - a. Atoms are getting smaller, electrons are closer to the nucleus
 - 2. Ionization energy of main-group elements tends to decrease as atomic number increases in a group
 - a. Atoms are getting larger, electrons are farther from the nucleus
 - b. Outer electrons become increasingly more shielded from the nucleus by inner electrons
 - 3. Metals have a characteristic low ionization energy
 - 4. Nonmetals have a high ionization energy
 - 5. Noble gases have a very high ionization energy
- E. Removing Additional Electrons

Na + 496 kJ/mol \rightarrow Na⁺ + e⁻ Na⁺ + 4562 kJ/mol \rightarrow Na⁺⁺ + e⁻ Na⁺⁺ + 6912 kJ/mol \rightarrow Na⁺⁺⁺ + e⁻

- 1. Ionization energy increases for each successive electron
- 2. Each electron removed experiences a stronger effective nuclear charge
- 3. The greatest increase in ionization energy comes when trying to remove an electron from a stable, noble gas configuration

III. Electron Affinity

A. Electron Affinity

- 1. The energy change that occurs when an electron is acquired by a neutral atom, measured in kJ/mol
 - a. Most atoms release energy when they acquire an electron

 $A + e^- \rightarrow A^- + energy$ (exothermic)

b. Some atoms must be forced to gain an electron

A + e^- + energy \rightarrow A⁻ (endothermic)

B. Trends

- 1. Halogens have the highest electron affinities
- 2. Metals have characteristically low electron affinities
- 3. Affinity tends to increase across a period
 - a. Irregularities are due to the extra stability of half-filled and filled sublevels
- 4. Electron affinity tends to decrease down a group
- 5. Second electron affinities are always positive (endothermic)

IV. Ionic Radii

- A. Cations
 - 1. Positive ions
 - 2. Smaller than the corresponding atom
 - a. Protons outnumber electrons
 - b. Less shielding of electrons
- B. Anions
 - 1. Negative ions
 - 2. Larger than the corresponding atoms
 - a. Electrons outnumber protons
 - b. Greater electron-electron repulsion
- C. Trends
 - 1. Ion size tends to increase downward within a group

V. Valence Electrons

- A. Valence Electrons
 - 1. The electrons available to be lost, gained, or shared in the formation of chemical compounds
 - 2. Main group element valence electrons are outermost energy level *s* and *p* sublevels

Group #	1	2	13	14	15	16	17	18
Number of valence Electrons	1	2	3	4	5	6	7	8

- VI. <u>Electronegativity</u>
 - A. Electronegativity
 - 1. A measure of the ability of an atom in a chemical compound to attract electrons
 - 2. Elements that do not form compounds are not assigned electronegativities
 - B. Trends
 - Nonmetals have characteristically high electronegativity

 Highest in the upper right corner
 - 2. Metals have characteristically low electronegativity
 - a. Lowest in the lower left corner of the table
 - 3. Electronegativity tends to increase across a period
 - 4. Electronegativity tends to decrease down a group of main-group elements

VII. Periodic Properties of the *d*- and *f*- Block Elements

- A. Atomic Radii
 - 1. Smaller decrease in radius across a period within the *d* Block than within the main-group elements
 - a. Added electrons are partially shielded from the increasing positive nuclear charge
 - b. Slight increase at the end of the *d*-Block is due to electron-electron repulsion
 - 2. Little change occurs in radius across an *f*-block of elements
- B. Ionization Energy
 - 1. Tends to increase across *d* and *f*-Blocks
- C. Ion Formation and Ionic Radii
 - Electrons are removed from the outermost energy level *s*-sublevel first

 Most *d*-block elements form 2+ ions (losing 2 *s* electrons)
- 2. lons of *d* and *f*-Blocks are cations, smaller than the corresponding atoms D. Electronegativity
 - 1. Characteristically low electronegativity of metals
 - 2. Electronegativity increases as atomic radius decreases