Chapter 11 - Molecular Composition of Gases

11-1 Volume-Mass Relationships of Gases

- I. Measuring and Comparing the Volumes of Reacting Gases
 - A. Observations of Gay-Lussac
 - 1. 2 liters H_2 + 1 liter $O_2 \rightarrow$ 2 liters H_2O vapor
 - 2. 2 volumes H_2 + 1 volume $O_2 \rightarrow$ 2 volumes H_2O vapor
 - 3. 1 volume H_2 + 1 volume $Cl_2 \rightarrow$ 2 volumes HCl
 - 4. 1 volume HCl + 1 volume NH₃ \rightarrow NH₄Cl (s)
 - B. Gay -Lussacs Law of Combining Volumes
 - 1. Under the same conditions of temperature and pressure, the volumes of reacting gases and their gaseous products are expressed in ratios of small whole numbers
- II. <u>Avogadro's Law</u>
 - A. An Explanation of Gay-Lussacs Observations
 - 1. Equal volumes of all gases under the same conditions of temperature and pressure, contain the same number of molecules
 - 2. The number of molecules of all gases, as reactants and products, must be in the same ratio as their respective gas volumes

$$V = kn$$

- B. Diatomic Molecules
 - 1. The ratio at which certain gases combine supports the existence of diatomic molecules
 - a. Molecules of active gaseous elements are diatomic
 (1) H₂, N₂, O₂, F₂, Cl₂, Br₂, I₂
 - b. Molecules of noble gases are monatomic

III. Molar Volume of a Gas

- A. Standard Molar Volume
 - 1. The volume occupied by one mole of any gas at STP
 - 2. 1 mole of any gas at STP occupies 22.4 liters of volume
- B. Determining Densities
 - 1. Density = m/v
 - 2. density at STP = mass of one mole / 22.4 liters

11-2 The Ideal Gas Law

- A. Ideal Gas Law
 - 1. The mathematical relationship of pressure, volume, temperature, and the number of moles of a gas.
 - 2. Mathematically:

PV = nRT

- a. *P* = Pressure in atmospheres
- b. V = Volume in liters
- c. *n* = # of moles
- d. *T* = Temperature in Kelvins
- 3. The ideal gas law reduces to Boyle's, Charles's, or Gay-Lussac's Law if the necessary variable is held constant

- B. The Ideal Gas Constant
 - 1. Units for R depend on units of measurement used for P, V, and T
 - 2. For units of atmospheres, liters, and Kelvins:

$$R = 0.0821 \frac{L \cdot atm}{mol \cdot K}$$

- C. Finding *P*, *V*, *T* or *n*
- 1. Three of the four variables must be known in order to use the ideal gas law D. Finding Molar Mass Using the Ideal Gas Law

1.
$$n = \frac{mass}{molar mass}$$
 so... $PV = \frac{mRT}{M}$ $\therefore M = \frac{mRT}{PV}$

E. Finding Density Using the Ideal Gas Law

1.
$$D = \frac{m}{V}$$
 and $M = \frac{mRT}{PV}$ Substituting *D* for $\frac{m}{V}$, you get $M = \frac{DRT}{P}$

2. Rearranging to solve for *D*:

$$D = \frac{MP}{RT}$$

11-3 Stoichiometry of Gases

- I. Volume-Volume Calculations
 - A. Assumptions
 - 1. All products and reactants are at the same temp and pressure
 - 2. Unless otherwise stated, assume STP
 - B. Solve by normal stoichiometric processes
 - 1. Volume ratios are the same as mole ratios
- II. Volume-Mass and Mass-Volume Calculations
 - A. Order of Calculations
 - You are given a gas volume and asked to find a mass gas volume A → moles A → moles B → mass B
 - You are given a mass and asked to find a gas volume mass A → moles A → moles B → gas volume B

11-4 Effusion and Diffusion

- I. Graham's Law of Effusion
 - A. Kinetic Energy
 - 1. For two different gases, A and B, at the same temperature

$$\frac{1}{2}M_{A}v_{A}^{2} = \frac{1}{2}M_{B}v_{B}^{2} \text{ so } M_{A}v_{A}^{2} = M_{B}v_{B}^{2}$$

by rearranging, we get:

$$\frac{v_A^2}{v_B^2} = \frac{M_B}{M_A} \text{ and then } \frac{v_A}{v_B} = \frac{\sqrt{M_B}}{\sqrt{M_A}} \text{ concluding that } \frac{\text{rate of effusion of } A}{\text{rate of effusion of } B} = \frac{\sqrt{M_B}}{\sqrt{M_A}}$$

- B. Graham's Law of Effusion
 - 1. The rates of effusion of gases at the same temperature and pressure are inversely proportional to the square roots of their molar masses

$$\frac{rate \ of \ effusion \ of \ A}{rate \ of \ effusion \ of \ B} = \frac{\sqrt{M_B}}{\sqrt{M_A}}$$

C. Applications of Graham's Law

1. Density can replace molar mass since density is directly proportional to molar mass

$$\frac{rate \ of \ effusion \ of \ A}{rate \ of \ effusion \ of \ B} = \frac{\sqrt{density_B}}{\sqrt{density_A}}$$

 Isotopes of elements can be separated by vaporizing the element, and allowing it to effuse. The heavier isotope effuses more slowly than the lighter isotope